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Abstract For the numerical simulation of magnetoplasmadynamic (MPD) self-field thruster flow,
the solution of one of the two dynamical Maxwell equations – Faraday’s law – is required. The
Maxwell equations and Ohm’s law for plasmas can be summarized in one equation for the stream
function so that the two-dimensional, axisymmetric magnetic field can be calculated. The finite
volume (FV) discretization of the equation on unstructured, adaptive meshes is presented in detail
and solutions for different thruster currents are shown. The calculated thrust is compared with the
experimental data.

Introduction
Magnetoplasmadynamic (MPD) self-field thrusters are candidates for
propelling manned spacecraft to Mars because they can achieve a high
exhaust velocity combined with a high thrust density (Auweter-Kurtz, 1992;
Bennett et al., 1990; Jahn, 1968). The basic principle of self-field MPD
propulsion is shown in Figure 1. Fuel is injected with a mass flow rate _m: It is
heated and ionized by the electric discharge between anode and cathode so that
a plasma is created. The plasma temperature can reach more than 40,000 K in
the nozzle throat region. The electric current density ~j induces an azimuthal
magnetic self-field ~B so that the plasma is accelerated by thermal expansion in
the divergent nozzle as well as by the Lorentz force ~j £ ~B.

Since the early 1980s, MPD thrusters have been investigated at the Institut
für Raumfahrtsysteme (IRS) experimentally, theoretically and numerically
(Auweter-Kurtz et al., 1998; Boie, 1999; Sleziona, 1998). Engineering aspects as
well as basic plasma processes are considered in order to achieve higher
efficiency and to avoid power-limiting plasma instabilities which are identified
by voltage oscillations and increasing anode losses.

Numerical methods have been developed worldwide (Choueiri, 1999; Fujita,
1996; Minakuchi and Kuriki, 1984; Niewood and Martinez-Sanchez, 1991;
Sankaran et al., 2000; Turchi et al., 1995) with the complexity of the discretized
conservation equations increasing with the available computing power.
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A new FV solver has been developed at the IRS for solving the conservation
equations describing a continuum-mechanical, turbulent axisymmetric argon
plasma flow under the influence of an arc discharge in thermal and reaction
non-equilibrium (Heiermann and Auweter-Kurtz, 2001).

A novelty is the time-stabilized FV solution of the stream function which
describes the distribution of the electric current on adaptive unstructured
meshes. The formulation of the stream function equation and its discretization
are explained in detail in the following sections.

Results are discussed for the thruster with hot anode HAT which has been
built (Figure 2) and is being operated (Figure 3) at the IRS.

Figure 1.
Basic principle of
self-field MPD
propulsion

Figure 2.
The self-field MPD
thruster with hot anode
HAT

HFF
14,4

560



Conservation equation for the magnetic field
For the derivation of the conservation equation for the magnetic field the
Maxwell equations (Jackson, 1962) are required:

rot ~B ¼ m0
~j þ

1

c2

›~E

›t
; ð1Þ

rot ~E ¼ 2
›~B

›t
; ð2Þ

div ~B ¼ 0 ð3Þ

and

div ~E ¼
rel

10
: ð4Þ

Since a stationary solution shall be achieved and since no high frequency
oscillations are considered, the Galilei-invariant formulation of equation (1) is
used, neglecting the displacement current. Equation (3) is automatically
fulfilled because of axisymmetry. In general, equation (4) can be used to
calculate the charge density rel. However, the plasmas considered can be
assumed to be quasineutral so that rel is zero.

Ohm’s law for plasmas is given by (Cap, 1994)

~E ¼
~j
s2 ~v £ ~B þ b~j £ ~B 2 b7pe: ð5Þ

Figure 3.
HAT, firing, 2000 A,

0.8 g/s argon
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It includes the electric conductivity s (Devoto, 1973), the convection velocity ~v
and the electron pressure pe.

The Hall parameter

b ¼
1

ene
ð6Þ

includes the electron density ne.
The equations (1), (2) and (5) can be used to write the conservation equation

for the magnetic field in cylindrical coordinates

~B ¼

0

B

0

2
664

3
775 ð7Þ

with the azimuthal component B:

›B

›t
¼ 2divðB~vÞ þ

Bvr

r
2 rot

rot ~B

m0s
þ

b

m0
rot ~B £ ~B 2 b7pe

 !
w

: ð8Þ

The first term on the right hand side describes the convective transport of the
magnetic field, the second term appears because of the use of cylindrical
coordinates. The third term describes the change of the magnetic field by the
electric current density ~j by the Hall current and by the 7pe term. Finally, the
magnetic field B in equation (8) can be substituted by the stream function

C ¼ rB ð9Þ

and subsequently, the conservation equation for the magnetic field becomes

1

r

›C

›t
¼ 2div

C

r
~v

� �
þ
Cvr

r 2

2 rot
1

m0s
rot

0

C=r

0

2
664

3
775þ

b

m0
rot

0

C=r

0

2
664

3
775 £

0

C=r

0

2
664

3
7752 b7pe

0
BB@

1
CCA:

ð10Þ

This equation shall be iterated until a steady-state solution for the stream
function is achieved. The contour lines of the stream function represent the
stream lines of the electrons which carry the electric current. Hence, a constant
electric current flows between two neighboring contour lines of the stream
function.
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The boundary condition on the eletrodes is that the electric field vector only
has a component perpendicular to the electrode surfaces. Ampére’s law is
applied everywhere else as Dirichlet condition for C:

C ¼
m0I

2p
; ð11Þ

where I is the thruster current.

Discretization
Owing to the complex geometry of MPD thrusters, the spatial discretization is
done on unstructured meshes. Appropriate adaptation (Iben et al., 2000) of
coarse initial meshes reduces the amount of computational time significantly.
An advancing front algorithm is used to create a primary triangulation of the
computational domain. The geometric centers of mass of the triangles are
connected to create the so-called dual cells, see Figure 4. The connection of the
centers of mass ~xm of the dual cells creates the so-called “dual triangles”. The
dual triangles are the result of the choice of cylindrical coordinates; the centers
of mass of the dual cells are not the geometric centers of mass.

A toroidal cell face is defined by its area DAik; the normal unit vector ~nik and
the Gauß point ~xik: Additionally, the dual triangles Tijk and Tikl and the
physical states left (l) and right (r) of the cell face are attached to the cell face.

For the discretization of equation (10) the theorems of GaußZ
DVv

div ~a dDVv ¼

Z
DAvk

~a dD~Avk ð12Þ

and Stokes

Figure 4.
Dual cells as control

volumes
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Z
DAv

rot ~E dD~Av ¼

I
›v

~E d~l›v ð13Þ

are needed on each dual cell v.
The theorem of Gauß is applied to the convective part, and the theorem of

Stokes to the rest of the right hand side of equation (10). The discretized right
hand side is written as:

RHSB ¼2
1

DVv

XK

k¼1

FB
WENOð~xvkÞDAvk þ

C
rm;v

vr

1
Kþ1

XK

k¼v
k¼1

r3
m;k

0
B@

1
CA

1=3

2
1

DAv

XK

k¼1

1

2

ðrot ~BÞTvjk

m0svjk

þ
ðrot ~BÞTvkl

m0svkl

þ
bvjk

m0
ðrot ~BÞTvjk

£ ~Bvjk

"

þ
bvkl

m0
ðrot ~bÞTvkl

£ ~Bvkl 2bvjkð7peÞTvjk
2bvklð7peÞTvkl

�
~xvkl 2 ~xvjk

h i
:

ð14Þ

FB
WENOð~xvkÞ denotes the convective flux of the magnetic field for which the

variables have been linearly reconstructed on each dual cell by a weighted
essentially non-oscillatory (WENO) scheme (Friedrich, 1998). The WENO
scheme assures second-order accuracy of the spatial solution.

The flux FB
WENOð~xvkÞ at the Gauß point ~xvk is computed with a flux vector

splitting scheme. The magnetoacoustic speed is defined as

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ð ph þ peÞ

r
þ

B2

m0r

s
: ð15Þ

One now defines a new reference speed

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac2 þ q2 1 2 2aþ a

q2

c2

� �s
; ð16Þ

with

q2 ¼ min c2; q2
n

� �
: ð17Þ

a is chosen as
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a ¼
2

gf
ð18Þ

with g ¼ 5=3 being the adiabatic coefficient. The velocity normal to the cell
face of two neighbouring dual cells is

qn ¼ vznz þ vrnr: ð19Þ

The eigenvalues are defined as

l0 ¼ qn;

l1 ¼ l0 þ s;

l2 ¼ l0 2 s:

ð20Þ

With the physical states left (l) and right (r) of a cell face the following
equations are chosen for the splitting:

h1l ¼
1

4
ðl1l þ jl1ljÞ; ð21Þ

h1r ¼
1

4
ðl1r 2 jl1rjÞ; ð22Þ

h2l ¼
1

4
ðl2l þ jl2ljÞ; ð23Þ

h2r ¼
1

4
ðl2r 2 jl2rjÞ: ð24Þ

The upwind flux function for the magnetic field is

F B ¼ Blðh1l þ h2lÞ þ Brðh1r þ h2rÞ: ð25Þ

In the source term in equation (10) an averaged radius is used to preserve
symmetry in the discrete case. Overlined values represent average values on a
dual triangle.

The remaining parts of equation (10) are discretized in a central manner. The
distances

~xvkl 2 ~xvjk

h i
represent the border of the toroidal cross section DAv of a dual cell v. The
average values ~xvkl and ~xvjk are calculated on the primary triangles and
represent the corners of a dual cell v.

The current density ~j is calculated by
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ðrot ~BÞTvjk
¼ m0

jz

½0:5ex�

jr

2
664

3
775
Tvjk

¼ m0

1

rm;vjk

›C

›r

� �
Tvjk

½0:5ex�

2
1

rm;vjk

›C

›z

� �
Tvjk

2
66666664

3
77777775
: ð26Þ

Since a steady-state solution is required, an explicit first-order time stepping
scheme is employed for time-stabilization. The calculation of the explicit local
time step for equation (10) considers the magnetic diffusion which is in some
sense comparable with a classical heat conduction problem. All K
neighbouring cells are included:

DtB ¼ CFLB
m0

2

1

K þ 1

XK

k¼v
k¼1

sk
1

K

XK

k¼1

j~xm;k 2 ~xm;vj

 !2

: ð27Þ

The CFLB number dampens the other mechanisms in Ohm’s law, which are not
considered in equation (27).

Before the actual time stepping is performed, all local time steps are
multiplied with different random numbers RND between 0 and 1:

DtB;RND ¼ DtBRNDB: ð28Þ

The time integration for the stream function C

Cnþ1 2Cn ¼ DtB;RND 1 2
1

K

� �
RHSB

vrm;v þ
1

K

XK

k¼1

RHSB
k rm;k

K

2
66664

3
77775: ð29Þ

includes local residual smoothing.
The requirement of robustness is the reason for the choice of first-order

time-stepping. Higher-order schemes like Runge-Kutta schemes generally
accelerate convergence as long as the right hand sides are relatively simple. In
the case of the complex non-linear right hand side presented here, they tend to
produce numerical oscillations.

The random time stepping also adds stability. It allows an increase of the
CFLB number by about an order of magnitude. Although its mathematical
properties are not yet understood, it is clear that it introduces a non-linear,
dampening dissipation which disappears once the steady-state solution is
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achieved. It should be mentioned here that the results obtained with and
without random time steps are similar.

Results
A typical discretization of the computational domain is shown in Figure 5. In
the nozzle area, the mesh is highly refined for a good resolution of the boundary
layers and for capturing the oblique shock (Figures 6 and 7) which is visible
during the experiment when the HAT is being fired in one of the test chambers
in the IRS laboratory (Figure 3).

While the shock is clearly visible in the heavy particle temperature Th, it
cannot be seen in the current distribution (Figure 8). Obviously, the convective

Figure 5.
HAT, entire adapted

mesh with 28,034 cells,
2,000 A, 0.8 g/s argon

Figure 6.
HAT, adapted mesh with

highly resolved
boundary layers and

oblique shock, 2,000 A,
0.8 g/s argon
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term in equation (10) is dominated by the other terms and the physical
mechanisms they represent.

The evolution of the current distribution with increasing thruster current
(Figures 8-11) shows that, beginning at about 4,000 A, the electric arc starts to
constrict downstream of the nozzle throat because of the pinch effect.

Also, the arc attachment on the anode surface varies strongly with changing
thruster current. The detailed analysis of the plasma/electrode interaction
(Goodfellow, 1996; Hügel, 1980) is part of the current work at the IRS. The
distribution of C is mostly smooth, and slight oscillations only appear for

Figure 8.
HAT, stream function C
(250 A between two
isolines), 2,000 A, 0.8 g/s
argon

Figure 7.
HAT, heavy particle
temperature, 2,000 A,
0.8 g/s argon
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5,000 A where the pinch effect reduces the particle density downstream of the
nozzle throat drastically.

The discretization is very robust and efficient. The results for C deliver
source terms in the conservation equations which are not discussed here. For
example, the Lorentz force acceleration of the heavy particles and the Ohmic
heating of the electron gas require smooth solutions of C which is guaranteed
by the discretization presented here.

The thrust can be calculated in the anode cross section as

Figure 9.
HAT, stream function C

(250 A between two
isolines), 3,000 A, 0.8 g/s

argon

Figure 10.
HAT, stream function C

(250 A between two
isolines), 4,000 A, 0.8 g/s

argon
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F ¼
DA

X
ph þ pe þ

B2

2m0
þ rv2

z

� �
DA: ð30Þ

Results are given in Table I. The thruster is mounted on a thrust measurement
stand in the test chamber to measure the thrust force. Since the thrust stand is
being thermally heated in a non-uniform way during the thruster firings, the
experimentally measured thrust data show some drifting. However, there is a
good agreement between numerical and experimental data. A further
evaluation of numerical and experimental results will be possible when
electrode phenomena are included so that, for example, the voltage can be
compared.

Conclusion
A new FV discretization for the conservation equation of the magnetic field in
self-field MPD thrusters has been developed for unstructured adaptive meshes.
Proper second-order upwinding and central discretization and explicit
first-order stepping including randomization and residual smoothing deliver
smooth steady-state solutions in a quick and robust way.

Figure 11.
HAT, stream function C
(250 A between two
isolines), 5,000 A, 0.8 g/s
argon

I(A) _m (g/s) F(N) num. F(N) exp.

2,000 0.8 4.3 3.7-4.7
3,000 0.8 5.9 5.7-7.0
4,000 0.8 8.5 7.8-9.4
5,000 0.8 10.1 11.1

Table I.
Thrust data for the
HAT (num.: numerical,
exp.: experimental)
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Numerical and experimental data for the thrust agree well. In the next step, the
plasma/electrode interaction will be investigated.
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